
So if you’ve dug around on the internet or heard of the P vs NP problem before coming into this
course (we don’t expect this from you by the way), you might know that P vs NP is somehow
connected to cryptography or even hacking! Cool stuff indeed. Question 5 was designed by
nobody other than Daniel in order to satisfy his sadism hopefully give you an idea on why P vs
NP is a relevant problem for cryptography.
As you might know (again from sources outside of this course), computers suck at being ran-
dom! Your computer can’t generate truly random numbers. It can only generate what are called
pseudo-random numbers, that is, numbers that look “random” enough (even though they are
generated by some deterministic algorithm). Generating truly random numbers is important
for cryptography though! Just like you want your passwords to be truly random (e.g. “123456”
is a really bad password), we need good random number generators to make sure information
is kept private.
In your homework, we defined a number generator G to be a poly-time computable function

G : {0, 1}n → {0, 1}n+1

where n is a variable. This is a really restrictive definition, only used for the sake of simplicity
on the assignment. In general, a number generator G is a poly-time computable function

G : {0, 1}n → {0, 1}l(n)

where l : N→ N is a function such that l(n) > n for all n. I like to think of G as a machine: you
give it a n-bit input from {0, 1}n as a “random seed” (if you’ve played games like Minecraft this
should look familiar!), and it will do some computation (which takes polynomial time) and
give you a l(n)-bit output (with l(n) > n).1

Number generators (from the above definition) need not be “random”, whatever that means.
For example, the following number generator doesn’t look very random...

G : {0, 1}n → {0, 1}2n, G(x) = xx.

In other words,G takes in the random seed x and just outputs x appended to itself. If you were
given thismachineG, and you’ve tried feeding it some inputs (say 0101, 0, 011, 0111), after some
time you might start to realize a pattern withG’s outputs (in our case it would be 01010101, 00,
011011, 01110111): it just duplicates whatever you gave it! After some time, you start to realize
that this doesn’t seem like a “random” number generator.
Now imagine a game: I have a truly random number generator T , which outputs strings from
{0, 1}2nwithuniformprobability.2 I’ll also have another truly randomnumber generatorBwhich
outputs strings from {0, 1}n with uniform probability. G : {0, 1}n → {0, 1}2n is defined as
before. Here’s how the game will work: I will flip a coin. If I get heads, I will write whatever
T outputs (which is a string in {0, 1}2n) on a piece of paper. If I get tails, I will take whatever
B outputs, say x ∈ {0, 1}n, then compute G(x) and write G(x) on a piece of paper. After I’ve
written the string, I will pass the paper to you. Your job is now to guess whether I got heads
or tails during my coin flip process. In other words, you want to try your best to answer the
question “did I generate this 2n-bit string using a truly random process, or did I plug some
number through G(x)?”
To answer that question, you could try a strategy like this:

• If the 2n-bit string isn’t of the form xx for some n-bit string x, then you can guarantee that
I landed heads, as G’s output is always just some string duplicated.

1In practice, l(n) is usually orders of magnitude greater than n: in the Minecraft analogy, given a random seed of
say 128 bits length, we will generate a complete Minecraft world out of it, usually taking up at least a fewmegabytes!

2Formally this would be a random variable with uniform distribution over {0, 1}2n, if you have taken stats before!

• If the 2n-bit string is of the form xx, then you will guess that I landed tails. You can’t
guarantee that the string is generated by G, since there is always a chance that the truly
random process of T just happened to generate a string of the form xx. But the chance of
this happening, compared to just me landing tails, is pretty small, so your best bet would
be that I’ve used G to generate this string.

Here’s a table to illustrate the possible outcomes of this game, if you use the above strategy:

Actual value of coin flip String is of the form xx String is not of the form xx

Heads Guess Tails Guess Heads
Tails Guess Tails (This never happens)

Again, if the string is not xx, then your guess that I’ve landed heads is guaranteed to be cor-
rect. On the other hand, if the string is of the form xx, then there is a possibility that you are
wrong (corresponding to the “Heads, String is of the form xx” cell). The probability of this case
happening is

P (String is xx | Heads)P (Heads) = 1

2
· # of strings in {0, 1}

2n of the form xx

of strings in {0, 1}2n

=
1

2
· 2

n

22n
=

1

2n+1
.

So the probability that you guesswrong is 1
2n+1 , which is really small when n is large. Effectively,

you are extremely likely to guess correctly using the strategy described above.
The reason why you are able to guess correctly is precisely because G : {0, 1}n → {0, 1}l(n)
sucks as a random number generator! You can easily predict, with good probability, which
strings look like outputs from G, compared to a truly random output. This is where the idea of
a pseudo-random number generator comes in. If G were a “random” number generator, then
you wouldn’t be able to distinguish the outputs of G from the outputs of T as easily, and hence
you wouldn’t be so successful in the above game.3

To formalize this procedure, instead of presenting the string on the paper to a human, we will
present this string to a Turing machine opponent (which we assume runs in poly-time, see
footnote 3). This Turing machine, instead of guessing “heads” or “tails”, will instead accept or
reject the string to indicate its guess. Given such a Turing machine D (for Distinguisher), we
define pD(n) to be the probability that it guesses heads for an input of size n, given that the
actual value of the coin flip is tails; we define rD(A) to be the probability that it guesses heads
for an input of sizeN , given that the actual value of the coin flip is heads. The “rate of success”

3There is still a way to win most of the time! You could go through every string x ∈ {0, 1}n, calculate G(x), and
see if there exists any x ∈ {0, 1}n such thatG(x)matches the string written on the paper. The table would then look
like

Actual value of coin flip String is of the form G(x) String is not of the form G(x)

Heads Guess Tails Guess Heads
Tails Guess Tails (This never happens)

so the only case where you fail is the top left cell, and the probability of that occurring is

P (String is G(x) | Heads) · P (Heads) = 1

2
· number of outputs of G

2l(n)
≤ 1

2
· 2n

2l(n)
=

2n

2l(n)+1
.

(The number of outputs of G is ≤ 2n, since G is a function with domain {0, 1}n, so G’s range could consist of at
most 2n numbers.)

This is a computationally infeasible strategy though: you’d have to compute G on all 2n strings, which takes expo-
nential time and hence is practically useless on large input sizes. That’s why we only restrict ourselves to poly-time
strategies, i.e. you’re restricted to doing a poly-time computation before guessing. In the problem set, we’ve added
the restriction that any distinguisherD must be poly-time for this reason.

of this Turing machine D would therefore be

P (Win) = P (Accept | Heads)P (Heads) + P (Reject | Tails)P (Tails) = 1

2
rD(n) +

1

2
(1− pD(n))

=
1

2
+

1

2
(rD(n)− pD(n)).

So if rD(n)− pD(n) > 0,D will guess correctly more than half of the time. If rD(n)− pD(n) < 0
though, D guesses correctly less than half of the time. But then we can just create D′, which is
D but swapping the accept and reject states, so that D′ will guess correctly more than half of
the time. Just like how consistently guessing wrong on a multiple choice quiz takes “skill”, if
D can consistently give a wrong answer, then in some sense we can still distinguish between G
and a truly random number generator!
Thus, if there is a Turing machineD such that rD(n)− pD(n) is much greater than 0 or rD(n)−
pD(n) is much smaller than 0, thenwe can tell thatG isn’t truly using this guessing game. So ifG
were a really good random number generator (in this case we call it a pseudo-random number
generator), ideally we want |rD(n) − pD(n)| to be really small for all D, so that the chance of
guessing correctly for any Turingmachine is really close to 1

2 ! The condition that “for every poly-
time Turing machineD and every c > 0, for large enough nwe have |pD(n)− rD(n)| ≤ 1

nc ” is an
attempt to capture this concept in mathematical terms: as n gets large, we want the probability
of success to be as close to 1

2 as possible, so we want to make |rD(n)− pD(n)| = |pD(n)− rD(n)|
as small as possible: smaller than 1

nc , for any c > 0.
Some bad news: we actually don’t even know if pseudo-random number generators exist at all!
To prove that a number generator is pseudo-random, you’d have to go through every single
Turing machine D and show that |pD(n) − rD(n)| ≤ 1

nc for large enough n. But showing that
a number generator G is not pseudo-random is easier: you can just find a poly-time D such
that the inequality |pD(n) − rD(n)| ≤ 1

nc won’t always be satisfied for some c > 0, no matter
how large n gets. As an example, I will show you that the not-so-random number generator
G : {0, 1}n → {0, 1}2n, G(x) = x is not pseudo-random. You may want to imitate a proof like
this for part (a).
Example: G : {0, 1}n → {0, 1}2n, G(x) = xx is not pseudo-random.
Proof. Let D be the Turing machine that does the following:

D(w) : If the left half of w is equal to the right half of w:
Reject

Accept

ThenD will reject any output fromG, and since the string is generated byGwhen we flip tails,
we have pD(n) = 0 for all n. On the other hand, the probability that D will accept a randomly
generated string from {0, 1} is 1− 1

2n as we have calculated from before, so rD(n) = 1− 1
2n . We

have
|pD(n)− rD(n)| = 1− 1

2n
.

Now if n > 2, then 1
2n < 1

2 , so we have |pD(n)− rD(n)| > 1
2 . Therefore if we let c = 1, for n ≥ 2

we have
1

nc
≤ 1

2
< |pD(n)− rD(n)|.

So no matter how large n gets, we can’t guarantee |pD(n)− rD(n)| ≤ 1
nc . Thus G is not pseudo-

random per definition. �

(b) asks you to prove that if P = NP, then there are no pseudo-randomnumber generators at all!
So if someone manages to prove P = NP, then all of this cryptography talk has gone to waste,
and you can come back and complain to us that we’ve assigned you this question in the first

place. After you’ve withdrawn all the money from your bank account, of course, in preparation
for the impeding global financial crisis resulting from the obsolescence of encryption methods.

Unfortunately, a good majority of computer scientists believe that P 6= NP, so you’ll still have to
do this problem either way. Sorry.

Figure 1: Cryptographers, after P = NP is proven, probably.

I’m not getting paid to write this. Send me some sushi coupons or something.

- Paul

